
The fine structure of cyclotron and spin resonances at their crossing: interplay between spin-

orbit and Coulomb interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 8725

(http://iopscience.iop.org/0953-8984/5/46/010)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 02:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/46
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


- 
3. my%.: Condens. Matter 5 (1993) 8725-8740. Printed in the OK 

The fine structure of cyclotron and spin resonances at 
their crossing: interplay between spin-orbit and Coulomb 
interactions 

Vladimir I Fal'kot 
hk-PIanck.Institu1 f"r Festkarperforschung, Heisenbergslrasse 1,70569 StuUgan, Federal 
Republic of Germany 

Received 29 July 1993 

Abstract We ampare the anticrossing of the spin and cyclotmo resonances in spin-polarized 
and non-polarized phases of a twodimensional electmn gas subjecled to a smng tilled magnetic 
field. The spin-orbil coupling splits these resonances into three lines with the gaps between 
them exactly equal to S h + l  = u , p ~  and 6% = v s o p F / f i  at odd- and even-inleger faclon. 
respectively. T k  I l f i  factor difference between the gaps S, and &,,+I arises f" the 
existence of two collective spin-wave-density modes in the polarized phase of interacling 
elecmns in the sysrem with two filled Landau levels. This allows us to predict a new type 
of spectral Shubnikov-de Haas oscillations, which indicates the r e - e n m e  of the 5ystem into 
the spin-poldzd state. 

1. Introduction 

One of the consequences of the generaI Kohn and h o r  theorems is that the frequencies 
of the cyclotron (a) and spin (SR) resonances in a system of twodimensional (2D) electrons 
with a parabolic dispersion is not affected by the electron-electron interaction and, therefore, 
are insensitive to the phase transitions into various collective states formed by the direct 
or exchange Coulomb effects [MI. This statement is exact and was proved to be valid 
for the Wigner crystalline phase of 2D electrons, as well as for any liquid (compressible or 
incompressible, spin-polarized or non-polarized) phase. 

On the other hand, the deviations of the electron dispersion law from parabolicity makes 
it possible to display the efficiency of the Coulomb correlation effects in the spectral position 
and fine structure of resonances r7-91. Among the sources of non-parabolicity, the spin- 
orbit coupling is one of the most interesting, but usually it is too weak to produce effects 
that are spectroscopically observable. Nevertheless, the weakness of the spin-orbit coupling 
can be partly compensated for in the case of the degeneracy of spin-split Landau levels, 
(n, t) and (n + 1, &), when it mixes the states with equal energies [lo]. As well as spin- 
and inter-Landau-level energy splitting being coincident with the frequencies of the spin and 
cyclotron resonances, this physical situation corresponds to that of the SR and CR crossing. 
The possibility of setting up crossing conditions is one of the features of 2D systems. This 
can be realized by subjecting the electron gas to a sufficiently tilted magnetic field, so that 
the strong tilting makes up for the relative smallness of the Zeeman spin splitting [11-13], 

t On leave from Theory Department, Institute of Solid State Physics, Russian Academy of Sciences, 
Chemogolovkq Moscow District, 142432. Russia 
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o, = eH, /mc  N o, = p g H / h  t, and two neighbouring Landau levels with different spins 
have coincident energies. Due to the spin-orbit coupling, the CR acquires some fine structure 
at this crossing which will be the subject of the analysis below, in particular from the point 
of view of its sensitivity to the electron-electmn correlations. 

One of the important consequences of the Coulomb interaction in this system consists 
in the transition to a collective spin-polarized state near the spin-split Landau level crossing 
at even-integer filling factors U = 2n predicted by Guiliani and Quinn [ 1 I ]  and, probably, 
observed by Koch era1 [I31 in In,Gal-,As-InP heterostructures. The exchange interaction 
of the electrons from nearly degenerate levels with those from the lower levels stimulates 
the spin alignment. so that the electron gas at the C R S R  crossing point has to be already 
polarized. As shown in section 4, the occupation of two excess Landau levels with the same 
spins produces a new spin-density wave mode which cannot manifest itself in ordinary spin 
resonance absorption, but affects the fine structure of CR at its crossing with SR, so that we 
can predict how it can be indirectly observed [ 141. This conclusion comes from a comparison 
between CR fine structures one can expect in the spin-polarized and non-polarized states of 
ZD electrons, as discussed in sections 5 and 3, respectively. 

The analysis below is based on the approach of inter-Landau-level (magneto) 
excitons [3,5,15]. This approach (see section 2) is applicable to completely filled 20 
Landau levels (i.e. to the integer quantum Hall effect conditions) and, formally, requires 
that the planar cyclotron energy hw, be larger than the Coulomb energy ~ ' / x A H  at the scale 
of the magnetic length 

(where ,y is the effective dielectric constant). This allows us to treat both the electron- 
electron interaction and the spin-orbit coupling as perturbations, but we pay a price: to 
satisfy the perturbation theory conditions, the g-factor should not be too small, and the 
calculations below are applicable to heterostructures of materials with a narrow gap (InP, 
InAs) rather than to GaAdAIGaAs heterostructures. 

As to the spin-orbit coupling in a ZD electron gas, the necessary information about the 
effective secondary quantized Hamiltonian describing the resonant spin-orbit splitting of 
degenerate Landau levels is given in appendix A. Appendix B is devoted to an analysis of 
the competition between the exchange Coulomb interaction and the spin-orbit coupling in 
the ground-state formation of a gas under artificial degeneracy conditions. 

2. Method of inter-Landau-level excitons 

Collective excitations in ZD electron systems will be described using the approach of 
magneto-excitons at completely occupied Landau levels [3,5,15]. This approach is based 
on the fact that at integer filling factors the electrons from filled Landau levels and the 
positive background of donors form a homogeneous neutral system [16]. In such a case 
the chargeless excitations from the ground state 10) can be classified by their momenta Q 
and, before we account for the spin-orbital interaction, also by the projection of the spin 
S on the direction of a tilted magnetic field. This provides a formal basis { ~ ~ N , ( Q ) l O ) )  
of low-lying excited states in the gas which are composed of an electron taken from the 

t We analyse the problem as if  g > 0. To gel the resnlls for a negative g factor one should exchange the spins in 
each pair of degenerate Landau levels. 
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N' = (n', a') level and put onto the level N = (n, a) (CY =$ or t). These states can be 
produced from the ground state by means of creation operators GA,.(Q) defined as 

$iN,(Q) = ~ e i P Q ~ a ~ p a ~ ~ , - ~ x .  (1) 
P 

Together with the annihilation operators $NN,(Q),  

cNNf(Q) = e-iQxey&i,N(-Q) 

they make the algebrat 

['bL,N;(Q'), $N~N;(Q) ]  e-iQ1'Q'y8N ? N ; $ $ , ~ ; ( Q  + &'I 
- e-'QaQ'y6N,N;$$2N;(Q Q'). 

In defining the operators in (1) we use the gauge 

A = (-H,y + Hyz, -Hxz,  0) 

and single-electron wavefunctions of the form 

where H, are normalized Hermitian polynomials and 

AH = (hc/eH,)''* 

is the magnetic length determined by the perpendicular to the plane magnetic field 
component. We also use the dimensionless momenta Q and p measured in the units 2;'.  

It is convenient to apply a formal representation of inter-Landau-level excitons to the 
problem of real excitations hybridized by the Coulomb interaction and mixed by the spin- 
orbit coupling. If we assume that the single-particle energy spacing hoc .-, ho, is much 
greater than both the Coulomb and spin-orbit energies, the hybridization and mixing involve 
only several magneto-excitons with close single-particle energies. Hence, in analysing the 
low-lying excitation spectrum, we can cut the basis of states [$$N,(Q)[O)] and work only 
with those that are in mutual resonance: 

E N  - E" fro,. 

This allows us to replace the full exact many-body Hamiltonian of w )  electrons 

A = Ijo + ir + tso 
by a set of finite-size matrices 

(2) 

each acting in its own subspace of excitonic states with a fixed 2D momentum Q and 
possible projections S = 0, zk1 of a spin to the axis h = H J H .  In these equations the 
pairs of Landau level numbers ( N .  N') and (N, ,ir? serve as indices of these matrices and, 

t Here and everywhere below we omit the insufficient normalization factor fmm the intermediate formulae. 

- - +  
H(A.A',(NN,)(Q) = ( ~ I ~ A A ' ( Q ) H Y ~ ~ ~ ( Q ) I O )  - ~ N ~ ~ ~ N , A . ( O I ~ ~ I O )  
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generally, each matrix has a blockdiagonal form with off-diagonal elements describing the 
conversion of one of the excitations QZN,(Q)lO) into another @?.,(Q)lO} in the course of 
Coulomb collisions and their mixing due to the spin-orbital coupling. 

of the Hamiltonian fi (we assume a simple parabolic 
conduction band structure) produces the diagonal terms in the matrix representation. The 
spin-orbit interaction, which we separate into the independent term 9,, couples the charge- 
and spin-density wave excitation in the gas. Its form is discussed in detail in appendix A 
and, under conditions of the degeneracy of spin-split Landau levels, can be written as 

N N  

The single-particle part 

The Coulomb interaction part of the Hamiltonian can be written in the usual way: 

where 

are Fourier components of the electron density operator, the coefficients 

come from the Fourier transform of the Landau wavefunction, L:;"' are normalized 
generalized Laguerre polynomials (q is also dimensionless; see footnote on previous page) 
and x is the effective dielectric constant of a media. To designate the intermediate stages 
of the calculations which give us the concrete form of the matrices in (2) we express the 
operator &) in (4) as 

We then use the algebra of excitonic operators and the fact that all Landau levels are 
either fully occupied or completely empty. These calculations can be also reformulated in 
diagrammatic language, and we refer the interested reader to earlier works [3,15]. 

With the reduced matrix form of the Hamiltonian available, the calculation procedure 
is straightfonvard. The dispersion and intemal structure of resulting charge and spin- 
density excitations can be found after diagonalization of the matrices H,fi,fitjLNWj(Q). The 
dispersion at Q -+ 0 determines the frequencies of resonances, whereas the eigenfunctions 
combined of '&ZN,(Q)lO) states help to analyse the optical activity of each transition. The 
dimension and specific form of the matrix Hamiltonian depend on the ground state of the 
system and on the set of excitons in resonance. We shall therefore consider its form for 
different filling factors separately. 
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3. CR+R anticrossing at odd-integer filling factors 

The set of basis excitons in resonance, and the form of the matnx Hamiltonian 
Hi$,,,ktNN,)(Q), arc simpler in the case of odd-integer filling, U = 2n+l ,  when ZD electrons 
in the ground state completely fill both Landau levels, (n+ I ,  .1) and (n ,  t), with coincident 
energies. 

From the point of view of the classification of low-lying excitations the unitfilling of 
fhe lowest Landau level provides us with a clear example: there is a single magnetoplasma 
mode, opl(Q) = w,+ Qez/2hx,  in the system which is weakly coupled by the pelturbation 
pso to a single spin S = +1 excitation, w, t e Q 2  [3,5]. This generates the 2 x 2 matrix to 
be diagonalized 

(The plasmon group velocity can be approximated by c/274x, which is three orders of 
magnitude smaller than the speed of light, and which makes its dispersion negligible in 
the infrared absorption). Therefore, as shown in figure I@), the absorption peak near the 
crossing point U, = w, is split by the spin-orbit coupling into two peaks 

w* = (wc + w,)/2 * J- 

81 = us&' = PPJdh) 

of equal intensity. The splitting gap in this case is 2 2 1 ,  where 

( 5 )  
in complete agreement with the prediction of single-particle considerations [IO]. In this 
estimation we used the magnetic field dependence of the spin-orbital coupling amplitude 
derived in appendix A, and the relation between the magnetic length and zero-field 2D Fermi 
momentum p p  in the gas. 

At this point it is necessary to note that the observation of the splitting given by (5 )  can 
be expected in structures that are pure enough, provided that the Landau level broadening 
fir-' (i.e. the CR linewidth) is less than the gap hv,,pp 

In the case of higher odd-integer filling there are four degenerate excitons near the 
crossing point. Two of them correspond to electron transitions between neighbouring Landau 
levels without any change of spin, but in interacting systems this does not mean the existence 
of two independent cyclotron resonances. The point is that the electromagnetic field can 
excite them only in the combination 

which is just one of the eigenstates 
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Figure 1. SR-CR tine splitting near the crossing for filling factors (a) Y = 1 and (b) II = 3.5.. . 
in the interacting eleceoon gas. Full c w e s  mark a wansition with an intensity comparable Lo 
that of CR. Broken curves mark SR, and dots indicate the combined frequency resonance spectral 
position. The set of basic magneto-excitons is shown in the inset. 

This 'optically active' mode has the linear dispersion 

wp~(Q) = 0, + ~o;yQ/x 

at small wavevectorS and coincides directly with the classical magnetoplasma oscillations. 
The group velocity of such an excitation is exactly equal to 

ao/aQ = Z G ~ ~ I X .  

Another mode 

can be treated like a spin-density wave with S = 0 and possesses a quadratic dispersion 
at Q -+ 0 131. It is 'optically passive' and cannot be found in the CR experiments but, 
as we shall show below, it is simultaneously mixed with the spin +I  and magnetoplasma 
excitations in the vicinity of the CR-SR crossing. 

We can now derive the magneto-exciton representation of the Hamiltonian in the form 
of a 4  x 4 matrix 
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acting within the basis of states ($$, $2, Gt , I^vz,)lO) (where and Îv:t describe spin t' zkl excitons related to the spin (CR) and combined frequency (CFR) resonances, respectively). 
The Hamiltonian in (7) contains all necessary information to analyse resonances near 

the crossing and study the efficiency of the electron-electron interaction effects. The latter 
manifest themselves in the shift of the energy of spin-I mode 

with respect to the single-particle energy h(2o, - ws), which also means that the CR- 
SR and CR-CFR crossings take place at a different tilt of the magnetic field (this fact is 
schematically illustrated in figure l(6)). As fi!xl is negative, (at U = 3, for instance, 
E?, = -,/$T&e2/xAH) the crossing between CR and cm occurs at o, - o, = IEYl/hl 
and, if the spin-orbit coupling is much weaker than the Coulomb interaction, the 4 x 4 
Hamiltonian should be replaced by simplified resonant 3 x 3 matrices, each deduced from 
(7) near one of the two resolved crossing points. 

Near the CR-SR crossing the corresponding 3 x 3 matrix is given by the upper left block 
in (7). Its diagonalization leads to the algebraic equation 

on the resonance position counted off the cyclotron frequency value: o = w, + S. This 
equation can be easily solved in two limits: that of a high or of a negligibly small excitation 
momentum?. In most realistic systems the limit Q .e oc/c + 0 is an actual one. In this 
limit the right-hand side of (8) can be replaced by zero and then we find one mode with 
frequency WCR = oc and relative intensity 

ICR ci 1 - 1/(2n + I)* 

and additional mixed modes with frequencies 

The relative intensities of the latter two modes are weak, and decrease rapidly when the 
Landau level number increases: 

Ii 
I 1 

2(2fl+ 1 )' 1 + A2 7 A m  

t When nnJvJxQ is much greater than the spin-orbit coupling, the resonant conditions are split once more, and Ute 
3 x3 matrix produces two 2 x 2 muices which describe two independent crossings of the spin (+ I )  mode with the 
magnetoplasmon and S = 0 spindensity wave, respectively. This means ulat only one of them can be found in the 
cyclotron resonance anomaly similar to that described for the unit filling. but with splitting 6 = v & ' / m .  
The splitting of S = 0 and S = +I  spin-wave excitations is much greater, 6 = u,Ai'Jn(n + I)/(- + 0, but is 
an internal event in the system and cannot be observed in absorption without the aid of impurities [17.18]. 
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where the parameter A = (w, - w , ) / ( 2 m u & ' )  shows how close to the crossing we 
are. In any case, the intensity of chipped satellite lines is maximal at lower filling factors 
and can be estimated as 5-10% of the main pak itself, whereas the characteristic splitting 
(the gap) which can be found after recalculation of the magnetic length at a fixed filling 
factor into the Fermi momentum in the gas at H = 0 

is just equal to the zero magnetic field spin-splitting value [ 191, and has the same magnitude 
as at U = 1. 

We now consider the C R ~ F R  crossing. The reduced 3 x 3 Hamiltonian related to this 
crossing can be obtained from (7 )  by excluding the matrix elements which correspond to 
the spin ( + I )  exciton. The optically active magnetoplasma mode is decoupled in this case, 
and the cyclotron resonance line should not change near its crossing with the CFR. The CFR 
mode mixes only with the optically passive spin-density wave $2 and does not produce 
any observable absorption anomaly at 

w, -os = lEY,l/fl. 

The latter statement is specific to systems where the Coulomb effects are much stronger than 
the spin-orbit effects. As for systems where the spin-xbit interaction is dominant, active 
and passive modes can no longer be resolved because they are strongly intermixed through 
the spin-wave excitations (see (7)). The picture of the crossing of resonances transforms, 
therefore, into that obtained in the single-particle approximation [IO]. 

4. Collective modes in the spin-polarized electron gas a t  even-integer filling factors 

The analysis of even-integer filling factors is more complex since there is a choice of the 
system ground state under artificial degeneracy conditions. Compared to the previous case, 
the pair of degenerate Landau levels at U = 2n + 2 is 'half-filled', which gives some 
freedom to their repopulation and variation of the excitation wavefunctions on approaching 
the single-particle level crossing. From [ I l l  we know that the exchange electron4ectron 
interaction gives an earlier increase (at least at zero temperature) to the polarization in a 
2D gas stimulated by the inter-Landau-level exchange (at w, > os) than could be expected 
from a singleparticle model. On the other hand, the spin-orbit repulsion of levels near 
the crossing tends to replace the phase transitions by a continuous mixing of states with 
opposite spins. As shown in appendix B, the crossover between these two characteristic 
behaviours rakes place when 

(this is an estimation for the filling factor two), and polarization transition always takes place 
while the spin-orbit coupling is weak. We shall therefore consider the spin-orbit coupling 
as a perturbation, analogously to what was done in the previous section, with the only 
difference being that the weak deformation of a ground state (introduced by ?so) slightly 
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1.50 -j 

Q 
Figure 2. Energy dispersion of hybridized spin-density waves in the polarized slate. ?he 
excitation energy is counted off the m a n  splitting value and is normalized by Ec = 
( n / 2 ) ' / 2 ~ 2 / ~ A ~ ;  Q is the excitation momenlum measured in units of inverse magnetic length 
1;'. The insel shows the primary basis of inler-Landau-level excilom in a spin-polarired slate. 

deforms single-particle creation and annihilation operators at coincident Landau levels. This 
correction is described in detail in appendix B and is insignificant for the crossing structure. 

Therefore, in constructing the basic set of excitations in the aligned phase of 2D electrons 
(already stable at the crossing o, = os) we can operate with unperturbed single-particle 
operators. For the sake of simplicity we first do our analysis for the filling factor U = 2. 
From the scheme of primary magneto-excitons shown in the inset to figure 2 one can 
find that, in addition to the single cyclotron mode Y&lL (it corresponds to U'& in terms 
of operators corrected in appendix B), the polarized state has two spin-flip modes @&,$ 

and related to the spin flip at different Landau levels (in appendix B these two are 
refenwl as $& and $&,,). The block of the matrix Hamiltonian which describes them can 
be extracted as 

and shows that the spin-density modes are hybridized into symmetric and antisymmetric 
combinations, ($&+ -I $&$)/a (the single-particle energy kw,, equal for both of these 
combinations, is omitted in this equation). 

Generally speaking, the symmetric mode describes the synchronous spin-flip for 
electrons at different (n = 0 and n = 1) Landau levels. Its frequency dispersion starts 
(at Q = 0) from the free-electron Zeeman splitting value, and this mode alone can be 
excited by an external alternative magnetic field in the SR experiment, which is in complete 
agreement with Larmor's theorem. 
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Another new antisymmetric branch of spin-density waves corresponds to the out-of- 
phase spin-flip at different Landau levels. In looking for an analogy, we can say that it 
is similar to the optical magnon in ferrimagnets with a complex unit cell. The dispersion 
curve of this excitation is shown in figure 2, and the energy gap (at Q -+ 0) is sufficiently 
enhanced by the exchange Coulomb interaction with respect to the Zeeman splitting: 

E ( Q  -, 0) =fro,  + E~ - AQ* 

where 

Although this mode cannot be excited in an ordinary spin resonance experiment, its existence 
nevertheless influences the CR fine sbucture near the crossing point. 

5. C R S R  anticmssing in the spin-polarized phase 

The latter expectation arises from the fact (clear from the inset in figure 2) that only the 
spin-exciton from'ihe primary basis can be coupled by the interaction ps0 to the 

magnetoplasma mode @Gll .  This means that, after hybridization, the firs-order spin- 
orbit interaction (whose amplitude is equal to J?u&.H) should be 'equally redistributed' 
between two symmetrized modes (@$,$ f. @'o+ror) fa). The relevant block of the matrix 
Hamiltonian can therefore be written in the form 

where 

a EC y = -  
4 a E c + ~ s - ~ c  

accounts for the effect of spin-orbital coupling on the ground state of the system, i.e. the 
deviation of exact operators @;,,, and q6t,q determined in appendix B from the primary 
basis of excitons and $GI$. As above, 

The term Hi2 describes the decay of the antisymmetric spin-density wave ($TflJ - 
ff i  into a continuum of two-electron excitations composed of pairs of cyclotron 

(GLlr) and spin +I  low-energy ($&lr) excitons. After symmetrization the mode 
($:rlr + 'b&ol)/fi does not interact with the continuum spectrum, which fits reasonably 
to Larmor's theorem. Moreover, tuming to the Hartree-Fock procedure in appendix B, we 
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should omit the ‘spontaneous’ creation of excitons (more accurately, &er the ground- 
state deformation by the spin-orbit term cs0 this is the exciton $&), the cyclotron mode 
is thus dccoupled from the two-excitonic states (at least in the first order on the spin-orbit 
interaction) and one can find from ( I  1) that these two resonances near the crossing are split 
into two lines with equal intensities and separated by the gap 262. 

At this point we should emphasize that the sufficient off-diagonal spin-orbit term in 
Hamiltonian ( 1  1 ) is suppressed by a factor I /& compared to those in (3) for the first pair of 
empty Landau levels at U = 2. This statement becomes more obvious if we take into account 
the relation between AH and zero magnetic field Fermi momentum p~ for fixed U = kn,hH, 
and find that 82 = p ~ s , / & .  This seems to be an exclusive indirect spectral indication 
of the antisymmetric exciton in infrared absorption and the only possibility to observe this 
mode in CR experiments, because its imaginary crossing with the magnetoplasmon in (11) 
occurs in the instability region of a polarized phase. 

In extending our analysis to the polarized state at higher even-integer filling factors, we 
should consider one additional inter-Landau-level transition mode .$&n-i,T in the basis set 
of excitons. This increases the matrix Hamiltonian dimension, but the appropriate choice 
of magnetoplasma and S = 0 spin-density wave already mentioned in section 3 reduces 
the problem to that considered above. That is, the CR line acquires in the vicinity of 
the crossing two weak satellites, similar to those in figure I@), whereas the imaginary 
crossing of magnetoplasma modes and & with an antisymmetric spin t1 exciton can 
be ignored because it occurs in the region of polarization instability. Therefore the only (if 
nevertheless important) difference from the picture of the odd-integer filling consists in the 
l/& reduction of the gaps between the three optically active modes: 

O C R  =ac 
o* = 2 * J ( y ) 2 + 6 & ,  

where 

in comparison with Sh+i = p p ~ ~ ~  for a non-polarized gas at v = 2n + 1. 
As for the non-polarized state at v = 2n + 2, we do not expect any C R 4 R  Line crossing 

in this case because the full occupation of the (n t) state forbids the spin-flip S = I 
transition. Therefore only CR-CFR crossing is meaningful. At U = 2, this crossing occurs 
at o, - o, = a&, where the non-polarized phase is completely unstable. For higher filling 
one can expect two coupled CFR modes and, after some hybridization, find that one of them 
lies in the region where the ground state can be non-polarized. Nevertheless, as follows 
from our consideration in section 3, the CFR mode can be only mixed with the optically 
passive mode $2; hence the CR is insensitive to this crossing. 

6. Summary: Shuhnikov-de Haas oscillations of the CR line structure 

Although the above consideration is related to the integer filling factors, where the excitonic 
representation works rigorously, the comparison of the Coulomb gas results with those for 
a single-particle model [IO] leads us to believe that the most pronounced changes with the 
CR line-shape (for a tilting angle which provides the crossing conditions, as = wc) takes 
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1 2 3 4 5 6  
V- 

- H  
Figure 3. Relative intensity of chipped lines as a function of a filling factor (the spline is made 
by eye). Crosses and circles mark the spin-orbital gaps in the CR fine suuclure for odd-integer 
filling factors and evcn-integer filling facton, respectively. 

place between the filling factors v = 1 and v = 3. At U < 2 the crossing Seems to manifest 
itself in two lines split into S = U&H (figure l(a)),  whereas at LJ > 3 the absorption line 
is composed of a huge peak placed just at the unperturbed CR frequency W R  = o , ( H , )  
and of two chipped weak satellites (figure I(6)). The simplest scenario for this transition 
can, therefore, be viewed as the appearance of an unperturbed CR peak at v = 2 whose 
intensity ICR increases with the filling up to 90% at U = 3, whereas the split lines (intensive 
at the lowest filling) become weak satellites, as shown in figure 3. The gaps separating 
these additional resonances are of the order of the magnitude of the zero magnetic field 
spin splitting and take the value of u s o p ~  at odd-integer filling factors and v , , p ~ / &  at 
even-integer filling factors. The scale of the splitting is independent of the specific value of 
an applied field it is fixed by the areal density of ZD electrons. This allows us to present 
the idea of direct measurements of the spin-orbit coupling in heterostructures. Furthermore, 
the new kind of Shubnikov-de Haas oscillations in the CR fine structure results from the 
re-entrance of the ZD system into a partially spin-polarized state expected at even filling 
in a sufficiently tilted magnetic field, and can be an indication of a specific spin-density 
wave mode in it. We therefore propose a method of spectroscopical observation of the 
spin-polarization phase transition in the 2D electronic system at sufficiently tilted magnetic 
fields. 
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Appendix A. Effective spin-orbit coupling between degenerate Landau levels 

The aim of this appendix is to discuss the spin-orbit coupling in 2D electron gas in 
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heterostructures and to describe how of the term pw in the secondary quantized Hamiltonian 
in (2) is derived. To be consistent with previous theories [20-22], we start the analysis with 
the 3D spin-rbit term in the conduction band electron dispersion, which for zinc blende-type 
semiconductors (like GaAs, InP, I d s )  is known in the form 

H,, = 2asK@) + Z@s@ x E )  (AI) 

where 

L@) = [ P X ?  (P;  - P 3 1  

K y O )  = b y .  (P: - P 3 1  

&@) = b 2 ,  (P; - P;H. 

The brackets denote the anticommutation {a ,  b]  = (ab + ba)/Z, and p = -ihV - eA/c 
is the momentum operator in a magnetic field. The first term in this equation results from 
the intrinsic lack of inversion symmetry in the bulk material. The second is caused by an 
electric field built into the heterojunction. 

To get an expression for the effective 2D spin-orbit coupling related to the lowest size- 
quantized subband, we retain in (Al) only terms containing pz and then derive the ZD 
spin-orbital coupling which is linear in px and py. Depending on the internal symmetry of 
the heterostructure it can be composed of two parts: 

HED' = 2A(s,p, - s l p X )  + ZBs(p1 x &). (A2) 

One part is specific to the planar symmetry of a square lattice with the lack of an inversion 
centre and is allowed, for example, in structures grown along the axis (100) (A =a(& and 
B = @(E, ) ) .  The other part, proposed by Bychkov and Rashba [ZZ], is axially symmetrical 
and is only possible in junctions grown along the axis (1 1 l), because their intrinsic symmetry 
is that of a triangular lattice. Because these two terms are of a different symmetry, the 
electron states at a zero magnetic field can be classified by their spin projection onto some 
axis 1,. which can be found from the direction of the electron momentum with respect to 
the lattice axes. At H = 0, the states sl, = *l/2 are split, and it is convenient to introduce 
the following quantity: the effective 2D spin-orbital velocity u,,@/p) which varies with 
the momentum rotation with respect to the crytallographic axes. Near the Fermi level. this 
gives us the value of the so-called zero magnetic field spin splitting p p ~ ~ ~  [19,23,24]. 

Turning to the case of a quantizing magnetic field, we choose a gauge 

A=(-Hzy+Hyz,-Hxt ,O) 

and a representation 

px = -(6 + 6+)h/A& py = i(6' - 6)h/A& 

of the electron momentum in terms of 'creation' (6+) and 'annihilation' (6) operators 
acting in the space of Landau wavefunctions (@" = 6t+n-,/@ = &+I /-, 
66' - 6'6 = 1). When the size quantization dominates the cyclotron rotation around the 
tilted magnetic field, we can neglect the influence of a parallel magnetic field component 
on the electronic subbands and arrive 
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In this expression hll = a, U = (h, - ih,)/hl, Rh = hi(1 - @/U2), R* = 
TU*’[(I h,) + ip(1 * h,)/u21 and p = B / A .  As to the spin, we choose the axis 
h = H / H  for its projection sh and 

are defined as sh-increasing and sh-decreasing operators, respectively. 
Under crossing conditions we do not need the complete form of coupling in (A2) but 

extract only the term relating the pairs of degenerate Landau levels. This gives us the 
desired spin-orbit part of the Hamiltonian in the secondary quantized representation: 

where 

(A3) 
A 

U&) = - / (I  - ghJlgl)z - 4hzhyp + pZ(1+ gh,/lgl)’ 

is slightly modulated depending on the magnetic field orientation in the plane of 2D gas 
relative to the crystallographic axest. 

J2 

Appendix B. Polarization phase transition in the presence of the spin-orbit coupling 

In this appendix we give an extension of a theory [ I l l  to systems with a pronounced 
spin-orbit coupling. That is, we analyse the competition between the exchange Coulomb 
interaction and spin-orbit coupling effects on the gas ground-state formation and determine 
appropriate single-particle operators i n  order to construct excitons in a slightly deformed 
polarized state. 

Following [ 111, we apply the Hartree-Fock approximation and use the method of 
Bogolubov-Valatin transformations. That is, the Fermi-operators of electrons at two crossing 
Landau levels N = (n + 1. J.) and N‘ = ( n ,  .T) should be mixed by a unitary rotation 

sothat the ground state IO) of the system has some completely filled ‘level’ q, ( O ~ ~ o q ( 0 ) ~ O )  = 
S, and another completely empty ‘level’ 6 ,  (10) = O’(S is an area of a system which is, in 
fact, the normalization factor omitted everywhere above). The complex parameters x and 
y can be found by minimizing the corresponding part of the ground-state energy: 

BNp = x f i p  + ytp 2N.p = -y$p f x8p I*.[’ + IyI2 = 1 

(B1) 
t One detail which can be important for experimental studies in realistic systems is the following. When a tilted 
magnetic field is strong, it can destroy the separation of in. and across-plane variables. In lhis extreme limit 
one can represent the electron wavefunctions in the form of sizequantized slates [m) along lhe magnetic field 
direction based on the lowest 3D Landau level [25]. After neglecting the electric-field induced term. we can get the 
spin-orbilal splitting gap (3Tt’lorl/A~I I(m + 1lphlm)l Ikih,l. where AH = (eH/hc)’i2. Compared Lo the purely 
m case. this gap depends on lhe magnetic field orienlation in the plane and varies from the maximal value realized 
for HI, oriented at (01 I )  directions, lo almost zero at (010) or (001). 
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with the normalization conditions 

to be taken into account. 
This algebra leads us to sane more clear expression for the groundstate energy: 

.- 

Quation (82) shows that if 

the polarization undergoes a jump (i.e. a phase transition) when the expression in the fist 
bracket in (B1) is equal to zero (i.e. at w, z os), and changes continuously (no phase 
transition at all) when the inequality opposite to that in (B3) takes place. For the lowest 
filling v = 2, the relevant constant is 

hV&,' 5 &fic = m ( e ' / X A H )  

which requires too high an effective ZD spin-orbital velocity, us0 - 4 x IO6 cm s-', for it to 
be the dominant spin-orbit effect (in most wide band gap materials U,, < 106 cm s-' [ZO]) .  
We can thus look upon the effect of spin-orbit coupling as being weak in comparison with 
the Coulomb interaction, so that our system chooses the ground state to be either polarized, 
or non-polarized, and the Bogolubov-Valatin transformation mixes the N and N' levels 
only slightly. 

This slight deformation of the polarized state at U = 2 (x + 1) is described by the 
Bogolubov-Valatin transformation coefficient 

Y - ~ s o A , ' / ( : E c + ~ s - ~ d .  

(In the non-polarized phase (x + 0) the mixing of spin-up and spin-down operators is 
given by x - uwA.H'/(wc - os)). This strictly determines new single-particle creation 
(annihilation) operators { and 6, and allows us to define the correct excitonic wavefunctions - +  
' € 'a+~~.q3  $&-lt, &Le&, $:+ltq analogously to section 3. In the polarized phase, 

%-If IT ~:fn-I.i  
^ +  -$+ 

' € ' n t l J , q  - n t ~ ~ n t ~ &  

%J = +,&& 'Yntltq - n+ltn+li  

are related to the spin-flip transitions and form the spin-density waves. Finally, the lowest- 
energy exciton $& corresponds to the inter-Landau-level spin-1 mode. 

As well as the first-order transition point w, -0, = ;Ec (this is an estimate [ l l ]  for 
U = 2). each phase has a point of complete instability. In the polarized state the instability 
develops at w, -os = ;Ec .  The non-polarized state is completely unstable at o, < w,. 

describe the inter-Landau-level transitions participating in the CR formation; and 
- +  - @ +  
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